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SUMMARY 
A calculation procedure is presented for predicting steady two-dimensional elliptic flows. The method 
introduces a density correction concept and an algebraic equation for the velocity correction instead of the 
troublesome pressure correction equation in the SIMPLER procedure. Computations show that the method 
has the same rate of convergence as SIMPLER while saving about 20% computational effort per iteration. 
Although the method is described for steady two-dimensional situations, its extension to three-dimensional 
problems is very straightforward. 

KEY WORDS Calculation procedure Density correction Elliptic flow 

1. INTRODUCTION 

The basic equations for fluid flow are the continuity equation and the momentum equations, 
which can be written for steady two-dimensional flow as 

a ( ::) a”y( :;) 2 a a 
-(puu)+-((pvu)=, /.- +- /.- - 7 + S ” ,  
dX dY ox 

- a (puv) + - a (pvo) = ( /. g ) +; ( /.; ) - $ + S”. 
ax aY ax 

The above equations are non-linear and interlinked. The computation of fluid flow has to be an 
iteration procedure. 

The main difficulty in fluid flow computation lies in the prediction of the pressure field. The 
pressure gradient appears in the momentum equation as an important source term, which is not 
expressible in terms of the velocity components or other variables. What indirectly determines the 
pressure field is the continuity equation. This indirect specification is not convenient as a 
computational procedure; a direct method of determining the pressure field and satisfying the 
continuity equation must be found. 

Because of the difficulty in determining the pressure field, some vorticity-based methods were 
introduced in the 1960s.’ The main features of these methods are deriving a vorticity transport 
equation by eliminating the pressure term from the momentum equation, together with the 
streamfunction, making the well known OF$ method. 
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The a-$ method has several attractive features: the pressure term no longer appears and the 
coupled equations are reduced to two (o and $). This method also brings some problems, such as 
the determination of the vorticity on solid walls, etc. The main problem is that the w$ method 
cannot be extended to three-dimensional situations conveniently. Because most real problems are 
three-dimensional, the w$ method has thus been strongly limited. As an alternative, primitive 
variable methods are widely used. 

In 1972, Patankar and Spalding described a primitive variable calculation procedure for three- 
dimensional parabolic flows, which has been given the name SIMPLE (semi-implicit method for 
pressure-linked equations).2 Its main features are deriving a pressure correction equation from the 
discretization continuity equation and momentum equations over a staggered grid system by 
omitting the term C a n & , ,  then correcting the velocity and pressure fields to make them satisfy 
mass and momentum conservation simultaneously. 

The omission in deriving the pressure correction equation does not influence the correctness of 
the final solution in the iteration procedure. The rate of convergence, however, is influenced by the 
omission. The approximate p’ equation tends to overestimate the value of p’, so that the SIMPLE 
procedure is prone to divergence unless some under-relaxation is used. Although the SIMPLE 
procedure has been successfully used for a number of problems, its rate of convergence has not 
always been satisfactory. A revised version, SIMPLER, has been f~rmulated.~,  It takes 
advantage of the property that although the values of p’ may be overestimated, the associated 
velocity corrections are of the right magnitude. In SIMPLER, therefore, the p’ equation is used for 
the purpose of correcting only the velocity field, while a separate equation, the pressure equation, 
is used for evaluating the pressure. 

No approximation such as omitting the term Can,,&, was used in deriving the pressure 
equation. So the pressure field obtained from the pressure equation is likely to be more correct 
than the field constructed from the p’ values. It is from this characteristic of the pressure equation 
that the SIMPLER procedure gives faster convergence and better iteration stability. 

Although one iteration of SIMPLER requires about 30% more computational effort than one 
iteration of SIMPLE, the extra effort per iteration is amply compensated by a reduction in the 
number of iterations required for convergence. The SIMPLER procedure has been successfully 
used for many problems. However, four discretization equations have to be solved to obtain three 
primitive variables in SIMPLER. There must be something unnecessary. A better method is 
needed. 

2. IMPLE PROCEDURE 

A new calculation procedure named IMPLE (implicit method for pressure-linked equations) has 
been developed. It takes advantages of the pressure equation in the SIMPLER procedure: the 
pressure equation is used to obtain the pressure field while an algebraic equation is used to correct 
the velocity field. 

2.1. Generation of the method 

in Figure 1 can be written as 
The discretized continuity equation and momentum equations for the control volumes shown 
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Figure 1 .  (a) Control volume for u (b) Control volume for u (c) Control volume for h 

where the a coefficients contain mass fluxes, viscosities, etc., the term b includes the source terms 
other than the pressure gradient, and the As are the areas of the control volume. 

Equations (4) can be written as 

where the pseudovelocities iie and 0, are given by 

%bUnb + bv ti, = 5 

a n  

and 

With equations (4) and (3, a pressure equation can be derived: 

where 
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Equation (8) is the pressure equation in the SIMPLER procedure, from which a pressure field p* 
can be obtained for a ‘guessed’ velocity field. Let u* and u* denote the velocity field for p*;  we have 

a,u: = 

a,uX = 1 
anb& + b” + A,@,* - pf), 

+ b“ + A,@,* - p;) .  

In general, u* and u* will not satisfy the continuity equation. This implies 

The ‘starred’ u* and u* must be corrected. 
Suppose that the correct velocity field can be described as 

u, = u: + ul,, u, = 0: + u;, (13) 
where u: and u; are named velocity corrections. 

Construct a ‘time-dependent’ term A; let 

and 
A - b = O  

A = pbd V/dt 

where p; is defined as the density correction, d Vis the control volume and dt is the time step in the 
iteration procedure. Substituting equation (15) into equation (14), we have 

pb = bdtJd V. (16) 
A density correction field can be obtained from equations (12) and (16). It may be noted that the 

density correction is likely to be a ‘potential’ of mass transfer: p’>O means a positive velocity 
correction; p’<O means a negative velocity correction; and p’=O implies satisfaction of the 
continuity equation. The density correction ought to make its contribution to the velocity 
correction. So we let 

where p* is an approximate density corresponding to the u*, u* solution. For incompressible 
flows, p* is a constant. 

Thus a velocity correction formula is generated by substituting equation (17) into equation (13): 

4 = (P; - @el Iufl/P:, 4 = (Pb - P;) IU,*I/PX, (17) 

u e = ~ t  + ( P ~ - P P : )  l~,*I/pe*, un=uX +(~b-pPh) IvXI/pn*, (18) 

Now the IMPLE procedure can be described as follows: 

1. Guess a velocity field. 
2. Calculate the coefficients in the momentum equations (4) and hence obtain the pseudo- 

velocities li and 0 from equations (6). 
3. Solve the pressure equation (8) to get p .  
4. Regarding this pressure field as p*, solve the momentum equations (1 1) to obtain u* and u*. 
5. Calculate the density correction p’ by equation (12) and correct the starred velocities with 

6. Return to step 2 with the corrected velocity field and repeat the procedure until convergence. 
equations (1 8). 

2.2. Discussion of IMPLE 

The procedure has been given the name IMPLE because it does not use the semi-implicit p’ 
equation. For the same reason, the IMPLE procedure requires much less computational effort 
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and computer storage than SIMPLER does. The iteration stability of IMPLE is satisfactory since 
the better pressure equation is used to obtain the pressure field. 

It may be noted that the expression for b implies that b is the 'mass source' present in the starred 
velocity field. The task of the density correction is to annihilate this mass source. 

The IMPLE procedure is an iterative one. The continuity equation and momentum equations 
are satisfied step by step in the iteration procedure. The time step dt in equation (16) determines 
the magnitude of the velocity correction. The value of dt should be chosen to make the values of u', 
u' of the same order as or less than those of u*, u*. Larger dt gives faster convergence and smaller dt 
results in slower convergence. 

3. TEST CALCULATIONS 

3.1. Statement of the problem 

The IMPLE procedure was tested and compared with SIMPLE and SIMPLER by application 
to a steady two-dimensional flow in a square cavity with a moving wall (Figure 2). The flow is 
regarded as laminar; the fluid properties and temperature are taken to be uniform. 

3.2. Computation details 

solution of the discretization equations. 

21 x 21 nodes and a time step dt =0.05 were used for all runs. 

The powder-law scheme was used for the flux expression and the line-by-line technique for the 

The computations were performed on an IBM-4341 computer. A uniform rectangular grid of 

3.3. Computation results 

Comparison of CPU times. The CPU times per iteration in the IMPLE, SIMPLE and 
SIMPLER procedure are respectively 0993, 0936 and 1.20s. This means that the IMPLE 
procedure needs 6.1% more computational effort per iteration than SIMPLE and 21% less than 
SIMPLER. 

Iteration history. Figure 3 shows the iteration histories of IMPLE, SIMPLE and SIMPLER 
for Re= 10, 100,500 and 1000. The rate of convergence of IMPLE is much faster than SIMPLE 
and of the same order as SIMPLER. 

Y l  
'//,, , , f,,, '//,, ,, f,,,4 

/ 
/ 

'0 171 ' """" -fr* "' /- x 
Figure 2. Cavity flow 
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Figure 3. Iteration history: comparisons of IMPLE, SIMPLE and SIMPLER 
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Velocity j e l d .  Figure 4 shows the variation of centreline velocities for various velocities of the 
moving wall. The results of IMPLE, SIMPLE and SIMPLER are in complete coincidence. The 
predictions for Re = 100 are compared with the numerical results of Burggraf;’ the agreement is 
very good. 
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Streamline patterns. Figure 5 shows the streamline patterns computed from the velocity field by 
the definition of the streamfunction. The results of IMPLE and SIMPLER are exactly the same, 
while the results of SIMPLE are a little different because the degree of convergence is different. 

- 

. I 

4. CONCLUSIONS 

The present paper has described a generally applicable, accurate and economical method for 
calculating steady two-dimensional flows. The method introduces a density correction concept 
and an algebraic equation for the velocity correction instead of the troublesome pressure 
correction equation, and hence requires much less computational effort and computer storage 
than the SIMPLER procedure does. 

Computations show that this method requires the same computational effort and computer 
storage as SIMPLE and has the same rate of convergence as SIMPLER does. Although the 
method is described for steady two-dimensional flows, its extension to three-dimensional 
situations is very straightforward. 
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Figure 5. Streamline patterns:----, IMPLE and SIMPLER; -----, SIMPLE 

APPENDIX: NOMENCLATURE 

discretization coefficient 
area of a control volume face; also time-dependent term 
constant term in discretization equation 
pressure coefficient 
time step 
control volume 
pressure 
estimated pressure 
pressure correction 
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Re 
S 
u, 0 
u*, v* 
u’, v’ 
ii, v* 
x, Y 
P 
P ,  P* 
P’ 

* 0 

Subscripts 
e, n, s, w 
nb 
P 

Reynolds number 
source term 
velocity components in x- and y-direction 
velocities based on p* 
velocity corrections 
pseudovelocities 
Cartesian co-ordinates 
viscosity 
densities 
density correction 
vorticity 
streamfunction 

control volume faces; also grid points 
neighbouring grid points 
central grid point 
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